		E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam - 611 002, Tamilnadu.					$\begin{array}{r} \text { Rev } \\ \mathrm{OE} / 20 \end{array}$	7/QB
DIGITAL ELECTRONICS								
Acade	mic Year	2021-2022	Question Bank	Programme	B.E - EEE			
Year /	Semester	II / III		Course Coordinator:	Dr. V.Mohan			
Course Objectives			Course Outcomes					
1. To study the fundamentals of digital systems, programmable logic devices and logic families. 2. To design and implement combinational logic circuits. 3. To design and implement synchronous and asynchronous sequential logic circuits.			On the successful complet CO1: Solve digital system algebra and Karnaugh Map CO 2: Construct combinati CO3: Build synchronous diagrams (K3) CO4: Construct asynchron assignment and state reduc CO5: Implement Boolea programmable logic devic	course, students will b using number systems circuits using logic gat logic circuits using ex ential logic circuits usi niques (K3) and combinationa gic families (K3)	to ry co d mu n ta w ta	, logic lexers stable transit us	ates, B 3) ble an n table g men	olean state state ories,
MODULE 1: NUMBER SYSTEM AND BOOLEAN ALGEBRA								
CO1: Solve digital system problems using number systems, binary codes, logic gates, Boolean algebra and Karnaugh Map (K3)								
S.No	Questions					Mark	COs	BTL
1	For a 3-input NOR gate with eight input possibilities, how many of those possibilities will result in a HIGH output? a) 1 b) 2 c) 7 d) 8					1	1	2
2	In the logic circuit shown in the figure, Y is given by a) $Y=A B C D$ b) $\mathrm{Y}=(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})$ c) $\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$ d) $\mathbf{Y}=\mathbf{A B}+\mathbf{C D}$					1	1	3
3	(A) 1100 (B) 1001 (C) 0101 (D) 0110					1	1	2
4	The binary (A) 1010	lent of FA_{16} is				1	1	2

	(B) 11111010 (C) 10110011 (D) none of these								
5	How many two input AND gates and two input OR gates are required to realize $\mathrm{Y}=\mathrm{BD}+\mathrm{CE}+\mathrm{AB}$ (A) 1,1 (B) 4,2 (C) 3,2 (D) 2,3						1	1	3
6	The output Y of the logic circuit given below is a) 1 b) 0 c) X d) X^{\prime}						1	1	2
7	The K-map for a Boolean function is shown in figure. The number of essential prime implicants for this function is (A) 4 (B) 5 (C) 6 (D) 8						1	1	3
8	For	the giv \qquad a) A b) A c) A d) \mathbf{B}	B + C	able,	$\left.\begin{aligned} & \mathrm{Y}=\ldots \\ & \hline Y \\ & \hline 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	\qquad	1	1	2

9	In a 7 segment LED display, identify the segments to be illuminated to display the decimal number 4 ? a) Segments a, f, b, c b) Segments c, d, e, f c) Segments a, d, e, g d) Segments b, c, f, g	1	1	2
10	Convert 59.72_{10} to BCD. a) 111011.1001000 b) $\mathbf{0 1 0 1 1 0 0 1 . 0 1 1 1 0 0 1 0}$ c) 1011001.0111001 d) 0101100101110010	1	1	2
11	Convert 8B3F 16 to binary. a) 35647 b) 011010 c) 1011001111100011 d) $\mathbf{1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1}$	1	1	2
12	$(734)_{8}=()_{16}$ (A) C 1 D (B) D C 1 (C) 1 CD (D) 1 D C	1	1	2
13	2's complement of 11001011 is \qquad a) 01010111 b) 11010100 c) 00110101 d) 11100010	1	1	2
14	Add the two BCD numbers: $1001+0100=$? a) 10101111 b) 01010000 c) 00010011 d) 00101011	1	1	2
15	The excess- 3 code for 597 is given by \qquad a) $\mathbf{1 0 0 0 1 1 0 0 1 0 1 0}$ b) 100010100111 c) 010110010111 d) 010110101101	1	1	2
16	Select the circuit for the Boolean function $\mathrm{X}=(\mathrm{AB})^{\prime}+(\mathrm{CD})^{\prime}$? (A)	1	1	3

20	The number of product terms in the minimized sum-of-product expression obtained through the following kmap is (where , "d" denotes don't care states) a. 2 b. 3 c. 4 d. 5	1	1	3
21	The Boolean function $\mathrm{Y}=\mathrm{AB}+\mathrm{CD}$ is to be realized using only 2 input NAND gates. Calculate the minimum number of gates required. (a) 2 (b) 3 (c) 4 (d) 5	1	1	3
22	For the identity, $\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{BC}=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}$, the dual form is	1	1	2

27	The simplification of the Boolean expression $(\overline{\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{C}}})+(\overline{\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}})$ (A) 0 (B) 1 (C) A (D) BC	2	1	3
28	Perform multiplication of the binary numbers: $01001 \times 01011=$? a) $\mathbf{0 0 1 1 0 0 0 1 1}$ b) 110011100 c) 010100110 d) 101010111	2	1	2
29	In a natural food restaurant, fruit is offered for desert but only in certain combination. One choice is either orange or apple or both. Another choice is either mango and apple or neither. A third choice is orange, but if you choose orange, then you must also take banana. The fruits are represented by their first alphabet of the name. Make use of Boolean logic, represent the fruit available for desert in simplified form. a) $\mathrm{A}+\mathrm{B}$ b) $\mathrm{M}+\mathrm{O}$ c) $\mathrm{A}+\mathrm{O}$ d) $\mathrm{M}+\mathrm{B}$	2	1	3
30	The following waveform pattern is for \qquad a) 2-input AND gate b) 2-input OR gate c) Exclusive-OR gate d) None of the above	2	1	3
31	Digital input signals A,B,C with A as the MSB and C as the LSB are used to realize the Boolean function $F=m_{0}+m_{2}+m_{3}+m_{5}+m_{7}$ where m_{i} denotes the $i^{\text {th }}$ minterm. In addition, F has don't care for m_{1}. The simplified expression for F is given by a) $\mathrm{A}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}+\mathrm{AC}$ b) $\mathbf{A}^{\prime}+\mathbf{C}$ c) $\mathrm{C}^{\prime}+\mathrm{A}$ d) $\mathrm{A}^{\prime} \mathrm{C}+\mathrm{BC}+\mathrm{AC}{ }^{\prime}$	2	1	3
32	In the given logic circuit the inputs are $\mathrm{A}=0$ and $\mathrm{B}=1$. Identify the logic states at X, Y and Z .	2	1	3

