

E.G.S. PILLAY ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu. Rev.0 COE/2017/QB

		DIGITAL ELECTRO	ONICS	
Academic Year :	2021-2022	Overtion Penk	Programme	B.E - EEE
Year / Semester :	II / III	Question Bank	Course Coordinator:	Dr. V.Mohan
Course Obje	ctives		Course Outcomes	
 To study the fur digital systems, logic devices and logic devices and logic devices and logic devices. To design and combinational logic. To design and synchronous and sequential logic circ. 	programmable ogic families. d implement c circuits. d implement asynchronous	On the successful completion of the CO1: Solve digital system problem algebra and Karnaugh Map (K3) CO2: Construct combinational logical CO3: Build synchronous sequential diagrams (K3) CO4: Construct asynchronous sequential assignment and state reduction technological control of the construct asynchronous sequential control construct asynchronous sequential control construct asynchronous sequential control construct asynchronous sequential control	as using number systems, bin c circuits using logic gates and d logic circuits using excitate mential logic circuits using fl miques (K3)	ary codes, logic gates, Boolean and multiplexers (K3) ion table, stable table and state ow table, transition table, state
	MOD	ULE 1: NUMBER SYSTEM AND	<u> </u>	

CO1: Solve digital system problems using number systems, binary codes, logic gates, Boolean algebra and Karnaugh Map (K3)

S.No	Questions	Mark	COs	BTL
1	For a 3-input NOR gate with eight input possibilities, how many of those possibilities will result in a HIGH	1	1	2
	output?			
	a) 1			
	b) 2			
	c) 7			
	d) 8			2
2	In the logic circuit shown in the figure, Y is given by	1	1	3
	A————			
	B- 107			
	°			
	a) Y=ABCD			
	b) $Y=(A+B)(C+D)$			
	c) Y=A+B+C+D			
	d) Y=AB+CD			2
3	The Gray code for decimal number 6 is equivalent to	1	1	2
	(A) 1100			
	(A) 1100 (B) 1001			
	(E) 1001 (C) 0101			
	(D) 0110			
4	The binary equivalent of FA ₁₆ is	1	1	2
•	The omary equivalent of 1 A 16 is	1	1	
	(A) 1010 1111			
	(~) ~~~~	l		l

	(B) 1111 1010 (C) 10110011			
	(D) none of these			
5	How many two input AND gates and two input OR gates are required to realize Y = BD+CE+AB	1	1	3
	(A) 1, 1 (B) 4, 2			
	(C) 3, 2			
-	(D) 2, 3 The output Y of the logic circuit given below is	1	1	2
6	The output Y of the logic circuit given below is	1	1	2
	×			
	4			
	a) 1			
	b) 0			
	c) X d) X'			
7		1	1	3
	The K-map for a Boolean function is shown in figure. The number of essential prime implicants for this			
	function is			
	AB 00 01 11 10 CD			
	00 1 1 0 1			
	01 0 0 0 1			
	11 1 0 0 0			
	10 1 0 0 1			
	10 1 0 0 1			
	(A) 4			
	(B) 5			
	(C) 6 (D) 8			
8	For the given truth table, $Y = \dots$	1	1	2
	A B C Y			
	0 0 0 1			
	0 0 1 1			
	0 1 0 0			
	0 1 1 0			
	1 0 0 1			
	1 0 1 1			
	1 1 0 0			
	1 1 1 0			
	a) $A + B + C$			
	b) A'+BC			
	c) A' d) B'			
	u _j v			<u> </u>

		1	1	
9	In a 7 segment LED display, identify the segments to be illuminated to display the decimal number 4?	1	1	2
	a) Segments a, f, b, c			
	b) Segments c, d, e, f			
	c) Segments a, d, e, g			
	d) Segments b, c, f, g			
10	Convert 59.72 ₁₀ to BCD.	1	1	2
	a) 111011.1001000			
	b) 01011001.01110010			
	c) 1011001.0111001 d) 0101100101110010			
11	Convert 8B3F ₁₆ to binary.	1	1	2
				_
	a) 35647			
	b) 011010			
	c) 1011001111100011			
	d) 1000101100111111			
12	$(734)_8 = ()_{16}$	1	1	2
	(A) C 1 D			
	(B) D C 1 (C) 1 C D			
	(D) 1 D C			
13	2's complement of 11001011 is	1	1	2
	<u> </u>			
	a) 01010111			
	b) 11010100			
	c) 00110101			
	d) 11100010			
14	Add the two BCD numbers: $1001 + 0100 = ?$	1	1	2
	a) 10101111			
	b) 01010000			
	c) 00010011			
	d) 00101011			
15	The excess-3 code for 597 is given by	1	1	2
	a) 100011001010			
	b) 100010100111			
	c) 010110010111			
	d) 010110101101			-
16	Select the circuit for the Boolean function $X = (AB)' + (CD)'$?	1	1	3
	$A \longrightarrow \bigcirc$			
	B—□ >			
	(A) \longrightarrow X			
]		

	(a) $(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$			
	(b) $(\overline{A} + \overline{B})(A + \overline{C})(\overline{B} + \overline{C}) = (\overline{A} + \overline{B})(A + \overline{C})$			
	(c) $(A+B)(\overline{A}+C)(B+C) = (\overline{A}+\overline{B})(A+\overline{C})$			
	(d) $\vec{A} \vec{B} + \vec{A} \vec{C} + \vec{B} \vec{C} = \vec{A} \vec{B} + \vec{A} \vec{C}$			
23	Answer: a Which of the figures in figure (a to d) is equivalent to figure (e)?	1	1	2
	A X			
	a.			
	B—————————————————————————————————————			
	b. Δ			
	BX			
	c.			
	B———X			
	d.			
	A X B e.			
	a. a b. b c. c d. d			
24	The switching circuit given in the figure can be expressed in binary logic notation as	1	1	3

	<u> </u>							ı	1	
	()	A) L =	=(A -	+B)(C	+D)	E				
	()	B) L=	=AB	+ CD	- <i>E</i>					
	(0	C) L =	= <i>E</i> +	(A + B)	B)(C+	- <i>D</i>)				
	(]	D) <i>L</i> =	=(AB	B + CD	E					
2.7	Answe					1.10				
25	From th			low, deter			OP expression.	1	1	3
		Ir	puts		0	utput				
	A	١	В	С		X				
	0		0	0		0				
	0)	0	1		1				
	0)	1	0		0				
	0)	1	1		1				
	1		0	0		0				
	1	-	0	1		0				
	1		1	0		1				
	1		1	1		0				
26	(B) (C) (D) Answe	$ \begin{array}{ccc} X &= A \\ X &= A \\ X &= \overline{A} \end{array} $ $ x: \mathbf{D} $	ABC + ABC+ ABC+	+ A B C + A B C + Ā B C + Ā B C +	- A B C A B \overline{C}			2	1	1
20	iviateii	the follo	List –	I			List – II	2	1	1
	a.	Cont	rolled	Inverte	er i.	a circu	it that can add 3 bits			
	b.	Full	adder		ii.	a circu	nit that can add two binary numbers			
	c.	Half	adder		iii	. a circu	uit that transmits a binary word or its			
						1's con	mplement			
	d.	Bina	ry add	ler	iv	. a logic	c circuit that adds 2 bits			
	Cod	les:								
		a	b	c	d					
	(1)	iii	ii	iv	i					
	(2)	ii	iv	i	iii					
	(3)	iii	iv	i	ii					
	(4)	iii	i	iv	ii					
	a) b) c) d)	3								

27	The simplification of the Boolean expression	2	1	3
	$(\overline{A}\overline{B}\overline{C})+(\overline{A}\overline{B}\overline{C})$			
	(A) 0			
	(B) 1 (C) A			
	(C) A (D) BC			
28	Perform multiplication of the binary numbers: $01001 \times 01011 = ?$	2	1	2
	a) 001100011			
	b) 110011100			
	c) 010100110			
29	d) 101010111	2	1	3
29	In a natural food restaurant, fruit is offered for desert but only in certain combination. One choice is either	2	1	3
	orange or apple or both. Another choice is either mango and apple or neither. A third choice is orange, but if			
	you choose orange, then you must also take banana. The fruits are represented by their first alphabet of the			
	name. Make use of Boolean logic, represent the fruit available for desert in simplified form.			
	a) A + B b) M + O			
	b) M + O c) A + O			
	d) M + B			
30	The following waveform pattern is for	2	1	3
	B J L L			
	a) 2-input AND gate			
	b) 2-input OR gate			
	c) Exclusive-OR gate d) None of the above			
31	Digital input signals A,B,C with A as the MSB and C as the LSB are used to realize the Boolean	2	1	3
	function $F=m_0+m_2+m_3+m_5+m_7$ where m_i denotes the i^{th} minterm. In addition, F has don't care for m_1 . The			
	simplified expression for F is given by			
	a) A'C'+B'C+AC			
	b) A'+C c) C'+A			
	c) C'+A d) A'C+BC+AC'			
32	In the given logic circuit the inputs are $A = 0$ and $B = 1$. Identify the logic states at X, Y and Z.	2	1	3
	x			
	A O Y			
) z			

a) X=1, Y=1, Z=0 b) X=1, Y=0, Z=0 c) X=0, Y=1, Z=0 d) X=0, Y=0, Z=1 33 Make use of Karnaugh map reduction technique, find the output expression 2 1 34 The elevator door should open if the elevator is stopped, it is level with the floor and the timer has not expired, or if the elevator is stopped, it is level with floor; T = timer expired and B = button pressed, select the Boolean expression that satisfies the above condition. a) D = SFT' + SFB
d) X=0, Y=0, Z=1 33 Make use of Karnaugh map reduction technique, find the output expression 2 1 34 The elevator door should open if the elevator is stopped, it is level with the floor and the timer has not expired, or if the elevator is stopped, it is level with floor; T = timer expired and B = button pressed, select the Boolean expression that satisfies the above condition.
Make use of Karnaugh map reduction technique, find the output expression 2 1 33
a) A+B' b) A+C' c) A'+C' d) A'+C 34 The elevator door should open if the elevator is stopped, it is level with the floor and the timer has not expired, or if the elevator is stopped, it is level with floor; T = timer expired and B = button pressed, select the Boolean expression that satisfies the above condition.
a) A+B' b) A+C' c) A'+C' d) A'+C The elevator door should open if the elevator is stopped, it is level with the floor and the timer has not expired, or if the elevator is stopped, it is level with floor; T = timer expired and B = button pressed, select the Boolean expression that satisfies the above condition.
b) A+C' c) A'+C' d) A'+C 34 The elevator door should open if the elevator is stopped, it is level with the floor and the timer has not expired, or if the elevator is stopped, it is level with the floor, and a button is pressed. If D = elevator door opens; S = elevator is stopped; F = level with floor; T = timer expired and B = button pressed, select the Boolean expression that satisfies the above condition.
b) A+C' c) A'+C' d) A'+C 34 The elevator door should open if the elevator is stopped, it is level with the floor and the timer has not expired, or if the elevator is stopped, it is level with the floor, and a button is pressed. If D = elevator door opens; S = elevator is stopped; F = level with floor; T = timer expired and B = button pressed, select the Boolean expression that satisfies the above condition.
b) A+C' c) A'+C' d) A'+C 34 The elevator door should open if the elevator is stopped, it is level with the floor and the timer has not expired, or if the elevator is stopped, it is level with the floor, and a button is pressed. If D = elevator door opens; S = elevator is stopped; F = level with floor; T = timer expired and B = button pressed, select the Boolean expression that satisfies the above condition.
d) A'+C The elevator door should open if the elevator is stopped, it is level with the floor and the timer has not expired, or if the elevator is stopped, it is level with the floor, and a button is pressed. If D = elevator door opens; S = elevator is stopped; F = level with floor; T = timer expired and B = button pressed, select the Boolean expression that satisfies the above condition.
expired, or if the elevator is stopped, it is level with the floor, and a button is pressed. If D = elevator door opens; S = elevator is stopped; F = level with floor; T = timer expired and B = button pressed, select the Boolean expression that satisfies the above condition.
If D = elevator door opens; S = elevator is stopped; F = level with floor; T = timer expired and B = button pressed, select the Boolean expression that satisfies the above condition.
pressed, select the Boolean expression that satisfies the above condition.
b) D = SFT'B
c) D = SF + T'B
d) D = (S+F) T' B 35 Identify the logic circuit that realizes the function F whose Karnaugh map is shown in figure. 2 1 3
AB C 00 01 11 10
1 1 1 xamSide.Com
A - Q
B B ExamSide.Co
a) C — b) C — bandle.co
A-T)T _ , IT \ _
ExamSide.Com C) ExamSide.Com