

	A. LOW B. HIGH C. Don't Care D. Cannot be determined			
3	A multiplexer with a 4-bit data select input is a a) 4:1 multiplexer b) $2: 1$ multiplexer c) $\mathbf{1 6 : 1}$ multiplexer d) $8: 1$ multiplexer	1	2	2
4	A combinational logic circuit is shown here. It has 3 inputs A, B, C and 2 outputs D, E. Identify the name of the circuit. a) full adder b) full subtractor c) shift register d) decade counter	1	2	2
5	Match the terms in List - I with the options given in List - II : List - II (i) 1 line to 2^{n} lines (ii) n lines to 2^{n} lines (iii) 2^{n} lines to 1 line (iv) 2^{n} lines to 2^{n-1} lines codes: (3) (ii) (i) (iv) (4) (iv) (ii) (i) a) (1) b) (2) c) (3) d) (4)	1	2	2
6	Consider the two cascaded 2-to-1 multiplexers as shown in the figure. Determine the minimal sum of products form of the output X .	1	2	3

	(A) $\bar{P} \bar{Q}+P Q R$ (B) $\bar{P} Q+Q R$ (C) $P Q+\bar{P} \bar{Q} R$ (D) $\bar{Q} \bar{R}+P Q R$ a) A b) B c) C d) D			
7	The device shown here is most likely a \qquad a) Comparator b) Multiplexer c) Inverter d) Demultiplexer	1	2	2
8	The design of an ALU is based on \qquad a) Sequential logic b) Combinational logic c) Multiplexing d) De-Multiplexing	1	2	1
9	One that is not the outcome of magnitude comparator is \qquad a) $a>b$ b) $\mathbf{a}-\mathrm{b}$ c) $a<b$ d) $a=b$	1	2	2
10	Procedure for the design of combinational circuits are: A. From the word description of the problem, identify the inputs and outputs and draw a block diagram. B. Draw the truth table such that it completely describes the operation of the circuit for different combinations of inputs. C. Simplify the switching expression(s) for the output(s). D. Implement the simplified expression using logic gates. E. Write down the switching expression(s) for the output(s). a) B, C, D, E, A b) A, D, E, B, C c) $\mathbf{A}, \mathbf{B}, \mathbf{E}, \mathbf{C}, \mathbf{D}$ d) B, A, E, C, D	1	2	2
11	The number of control lines for 32 to 1 multiplexer is a) 4 b) 5 c) 16 d) 6	1	2	2

12	The number of bits in nibble and byte are \qquad and \qquad respectively. a) 2,8 b) 8,16 c) $\mathbf{4 , 8}$ d) 1,4	1	2	1
13	Which of the following is not a combinational logic circuit? a) Full adder b) Encoder c) Counter d) Demultiplexer	1	2	2
14	A device which converts decimal number into BCD form is called ----- and the device which converts BCD into octal is called \qquad a) Encoder, Decoder b) Decoder, Encoder c) code converter, demultiplexer d) multiplexer, Decoder	1	2	1
15	The output Y of a 2 bit comparator is logic 1 whenever the 2-bit input A is greater than the 2-bit input B . The number of combination for which the output is logic 1 , is a) 4 b) 6 c) 8 d) 10	1	2	3
16	How many select lines would be required for an 8-line-to-1-line multiplexer? a) 2 b) 4 c) 8 d) 3	1	2	2
17	In the given 4-to- 1 multiplexer, if $\mathrm{c} 1=0$ and $\mathrm{c} 0=1$ then the output M is \qquad a) X 0 b) X 1 c) X 2 d) X3	1	2	2
18	If we record any music in any recorder, such types of process is called \qquad a) Multiplexing b) Encoding c) Decoding d) Demultiplexing	1	2	2

19	A certain BCD-to-decimal decoder has active-HIGH inputs and active-LOW outputs. Which output goes LOW when the inputs are 1001 ? A. 0 B. 3 C. $\quad 9$ D. None. All outputs are HIGH.	1	2	2
20	A basic multiplexer principle can be demonstrated through the use of a \qquad a) Single-pole relay b) DPDT switch c) Rotary switch d) Linear stepper	1	2	2
21	How many select lines would be required for an 8-line-to-1-line multiplexer? a) 2 b) 4 c) 8 d) 3	1	2	2
22	A combinational circuit which is used to send data coming from a single source to two or more separate destinations is called as: (a) Decoder b) Encoder c) Multiplexer d) Demultiplexer	1	2	1
23	The simplified expression of full adder carry is \qquad a) $c=x y+x z+y z$ b) $c=x y+x z$ c) c $=x y+y z$ d) $c=x+y+z$	1	2	2
24	In a combinational circuit, the output at any time depends only on the \qquad at that time. a) Past output values b) Intermediate values c) Both past output and present input d) Present input values	1	2	1
25	Which one of the following is odd? a) Multiplexer b) Decoder c) Adder d) Flip-Flop	1	2	2
26	In the following circuit, the motor will turn on when DRIVE $=1$	2	2	3

	Identify the input values of $\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 7, \mathrm{~A} 8$ and A 9 in order to run the motor. a) $\mathrm{A} 0=\mathrm{A} 1=\mathrm{A} 2=\mathrm{A} 3=\mathrm{A} 4=\mathrm{A} 5=\mathrm{A} 6=\mathrm{A} 7=\mathrm{A} 8=\mathrm{A} 9=1$ b) $\mathrm{A} 0=\mathrm{A} 1=\mathrm{A} 2=\mathrm{A} 3=\mathrm{A} 4=\mathrm{A} 5=\mathrm{A} 6=\mathrm{A} 8=\mathrm{A} 9=1 ; \mathrm{A} 7=0$ c) $\mathrm{A} 0=\mathrm{A} 1=\mathrm{A} 2=\mathrm{A} 3=\mathrm{A} 4=\mathrm{A} 5=\mathrm{A} 6=\mathrm{A} 7=1 ; \mathrm{A} 8=\mathrm{A} 9=0$ d) $\mathrm{A} 0=\mathrm{A} 1=\mathrm{A} 2=\mathrm{A} 3=\mathrm{A} 4=\mathrm{A} 5=\mathrm{A} 6=\mathrm{A} 7=\mathrm{A} 8=1 ; \mathrm{A} 9=0$			
27	Consider the given circuit diagram of switching of light from two different switches. Identify the input conditions that will turn on LED. a) $\mathrm{A}=1, \mathrm{~B}=1$ b) $\mathrm{A}=0, \mathrm{~B}=0$ c) $\mathrm{A}=1 . \mathrm{B}=0$ d) Both (a) and (b)	2	2	3
28	The combinational logic circuit shown below has 2 inputs A and B and has one output X. Identify the function to be performed by the circuit.	2	2	3

	a) A XOR B b) A XOR C c) B XOR C d) $\mathrm{A}+\mathrm{C}$			
31	A copy machine generates a stop sign S, to stop the machine operation and energize and indicates light if according to either of the following conditions exists: (1) There is no paper in the paper feeder tray. (2) The two micro switches in the paper path are activated, indicating a jam in the paper path. The presence of paper in the feeder tray is indicated by a high at logic signal P as shown in figure. Select a logic circuit so as to get HIGH output at S . (A) (C) (B) (D) Answer: C	2	2	3

32	What Boolean function does the circuit below realize? a) $x z+x^{\prime} z^{\prime}$ b) $x z^{\prime}+x^{\prime} z$ c) $x^{\prime} y^{\prime}+y z$ d) $x^{\prime} y^{\prime}+y z$	2	2	3
33	The output f of the 4-to-1 MUX shown in fig. is A $\overline{x y}+x$ B $x+y$ C $\bar{x}+\bar{y}$ D $x y+\bar{x}$ Answer: B	2	2	3
34	Identify the code generated by the given circuit. The input is a binary code - $y_{1} y_{2} y_{3}$. (A) Excess- 3 code. (B) Gray code. (C) BCD code. (D) Hamming code. Answer: B	2	2	3
35	Calculate the number of OR gates required for a Decimal-to-BCD encoder. a) 2 b) 10 c) 3 d) 4	2	2	3

